
J O U R N A L O F M A T E R I A L S S C I E N C E 3 6 (2 0 0 1) 3113 – 3118

Neural modelling of polypropylene fibre

processing: Predicting the structure and

properties and identifying the control

parameters for specified fibres

G. ALLAN∗, R. YANG, A. FOTHERINGHAM, R. MATHER
School of Textiles, Heriot-Watt University, Scottish Borders Campus,
Galashiels, Scotland, TD1 3HF UK

This paper describes the application of artificial intelligence to data derived from
polypropylene drawing carried out at Galashiels using designed experiments. The topology
of the data is visualised in two dimensions with respect to specific properties to be
modelled, as a quality check on the process data. A series of neural network models are
used successfully to predict the tenacity, elongation, modulus and heat shrinkage and also
the crystallographic order and polymer chains orientation of the output fibres from the
draw parameters values. A software harness is constructed for using the neural predictors
to find the draw parameters which come closest to achieving any specified combination of
fibre properties. C© 2001 Kluwer Academic Publishers

1. Introduction
The building of models or simulations of industrial pro-
cesses offers many benefits. These include: forecast-
ing the outputs from untried combinations of param-
eters values, unlimited experimentation and searching
at no cost, process improvements through studying the
model, minimised downtime for trials, training for op-
eratives, and investigation of hazardous events.

In recent years the availability of fast personal com-
puters has provided software tools which can enable
researchers to build computer simulations of the rela-
tionships observed in sets of observations, by adapta-
tion to the data. These types of computer simulations are
called Neural Networks (from their copying of learning
and recall processes in the brain cortex), and they learn
from experience, like children. The internal functions
which result from “training” neural networks may well
be too complex to capture by mathematical models or
express as rules; nevertheless, if neural networks are
trained on examples which are a good statistical repre-
sentation of the parameter space and are also optimised
in their own design, the resulting models of processes
are likely to be able to provide all the model features
which are presented above.

Two types of neural network were used in this study:
the Kohonen Self-organising Map (or SOM) and the
Multilayer Perceptron (or MLP). Both these neural net-
work paradigms are to an extent biological metaphors
of the brain cortex, since in the software medium they
consist of multiple nodes or “neurons” interconnected
by “axons” or links of adjustable strengths or weights.
The SOM is trained to build an internal representa-

∗Author to whom all correspondence should be addressed.

tion of the data presented to it through a process of
learning which is unsupervised, in that no evaluations
(or targets) are supplied by the user, and the SOM
develops its own interpretation of the observed data
space. The SOM is a practical tool, because it can
express the data in a two-dimensional (2D) map re-
gardless of the original number of parameters. The
arrangement of the data examples (observations) in
the map will indicate any natural clusters and/or out-
liers which may help or hinder a successful simula-
tion of the process represented by the data. As regards
the MLP, this is a feed-forward network originally-
derived from studies of the human visual system. It
learns through repeated iterations to map observed pat-
terns or vectors to their associated targets, which can
be evaluations of the patterns, or arbitrary classifica-
tions or labels for them. Both of these neural network
paradigms are explained in detail in [1–5], but the ba-
sic architectures and algorithms are presented below in
Section 2.

Yang, Mather and Fotheringham [6] carried out a
multivariate analysis of the parameters for drawing of
melt-spun polypropylene and the nature of the resultant
fibres. The experimental design used to set up the tri-
als in [6] by its nature set out to study the effects of all
the parameters of the data space, providing information
about the covariance but using the minimum number of
trials. The data set was therefore well-suited to con-
structing effective adaptive models, that is, training a
Kohonen map and MLP networks, and the modelling
as well as a methodology for optimisation of the draw
process will be described in this paper.

0022–2461 C© 2001 Kluwer Academic Publishers 3113

2. Kohonen networks and multilayer
perceptron networks

The Kohonen network consists of a single layer of neu-
rons, each connected to all of the parameter inputs from
the vectors or patterns input as training data. Before
training, weight values are allocated to all of these con-
nections, and set initially to random values between 0
and 1. As each vector or pattern of observation values
is presented to the layer of neurons, the weights vectors
of all the neurons are assessed for competitive activa-
tion a j , as measured by the Euclidean distance from the
input vector. The winning neuron is the one closest to
the input vector, that is, whose a j is smallest:

a j =
√√√√ n∑

i=0

(wi − ii)2 (1)

Where n is the number of weights per neuron, wi is
each of the weights, and ii is the corresponding value
of the input vector.

Once the winning neuron is found for the current
input vector, the weights of the neuron are adjusted
to bring the the neuron’s weights vector closer to the
inputs vector using (2) below:

δwi = −η(wi − ii), (2)

where δwi is the change in the weight i , η is a learning
rate control factor such that 0 < η < 1, wi is the current
weight i , and ii is the normalised parameter i of the
input vector.

Around the winning neuron is a neighbourhood of
connected neurons whose weights vectors are all ad-
justed by δw. As the network in training mode is pre-
sented with each of the input vectors in turn, the learning
rate and neighbourhood size are slowly decreased. The
effect of these controls is hopefully to recognise fine
distinctions in the data and damp down oscillations be-
tween close clusters. Iterating this process many times
through the training vectors set eventually results in
convergence, and no further changes will be seen in the
topographical visualisation of the neurons layer. In the
neural software development environment [7] used to
implement the models the layer of Kohonen neurons
can be displayed graphically during the learning, and
shows the referenced vectors of the training data allo-
cated to layer neurons according to their natural clus-
ters, or similarities. The trained state of the Kohonen
neurons can thus be graphically represented as a 2D to-
pographical map or SOM (self-organising map) of the
natural clusters of patterns found in the original data.
Although the Kohonen SOM learns without supervision
(that is, without target evaluations of the input vectors),
the map of positioned references to the inputs can be
labelled according to a variety of ways of evaluating
the inputs. In this way a single topographical map of
the dataspace can spawn relational maps of a range of
properties attributable to the data vectors. This can indi-
cate the quality of the dataspace as a basis for adaptive
modelling, since the natural clusters and boundaries for
each property may suggest linearity (where a line can

separate vectors with high values for the property from
vectors with low ones), non-linearity (where more than
one boundary would be needed), or chaos (with no clus-
ters for values of this property).

The multilayer perceptron or MLP is also modelled
on the brain biology with its neurons and multiple con-
nections, but learns by means of directional processes
involving several layers of neurons, summations, and
thresholding of signals using an activation function, an
observed feature of brain activity. Consider an MLP
with 3 layers of neurons. In this nomenclature let wpq,k

be the weight of the connection from neuron p of layer
j to neuron q of layer k.

Using the above convention, wpq,k would be the
weight of the connection from neuron p in layer j into
node q of layer k. The network learns by calculating an
output at the nodes of layer k in response to the input
vector at layer i (the Forward Pass), then calculating
from the difference between the target output and the
actual output an adjustment to the weights of the con-
nections into the hidden layer j and the output layer k
so that an error or cost function will be reduced. The
process of “back-propagating” the error values through
the weights into the i and j layers is called the Reverse
Pass. The two mechanisms will now be explained in
more detail.

2.1. The forward pass in MLP learning
Suppose an input vector ξ is applied to layer i . The
signals to each of the layer j neurons will be the prod-
ucts of the connection weights into these neurons and
the values of the ξ signals into these connections. These
products are now summed, then “squashed” to the range
0 to 1 by activation function F . This is normally the sig-
moid or logistic function as shown in (3) below.

F(αp, j) = 1

1 + e−ap, j
(3)

where αp, j is the activation at neuron p of layer j .
This function of the output has two roles: it keeps
the summed signals within reasonable bounds, and its
derivative is a function of itself, which is useful in the
Reverse Pass described below. Since the outputs of layer
j are the inputs to layer k, the Forward Pass is completed
by repeating the above multiplications, summations and
squashings to find the activations at layer k, the network
outputs for the input ξ .

3114

2.2. The reverse pass in MLP learning
To illustrate this we will look at the process of train-
ing the weight from neuron p of hidden layer j into
neuron qk of the output layer. The error δ is based on
the difference between the target value and the network
output (OUT) at qk , but multiplied by the derivative of
the sigmoid squashing function (3, above) which gives
gradient descent of the error:

The derivative

F ′(αp, j) = F(αp, j) (1 − F(αp, j))

= OUT(1 − OUT)

Then

δ = OUT(1 − OUT) (Target − OUT) (4)

The adjustment to the weight is found by multiplying
δ by η, a learning rate control factor where (0 < η <1),
then by the input signal, which would be the OUT ac-
tivation of the neuron in the preceding layer j . This
process is followed for all the weights from the hidden
layer into the output layer. An illustration would be:

	wpq,k = ηδq,kOUTp, j (5)

where 	wpq,k is the weight adjustment for the connec-
tion from neuron p into neuron q of layer k, δq,k is the
result from (4) above relating to the error at neuron q
of output layer k, and OUTp, j is the output activation
from neuron p of the hidden layer j . Then:

wpq,k(n + 1) = wpq,k(n) + 	wpq,k (6)

where wpq,k(n + 1) is the adjusted weight from neuron
p to neuron q of layer k at step (n + 1), and wpq,k(n) is
the corresponding weight at step n, before adjustment.

As regards the weights from the input layer i to the
hidden layer j , the error δ cannot be calculated from a
comparison of net output with targets at layer j , since
these are not available. To solve this problem and allow
the errors to be back-propagated through the network to
the ij connections, a δ value is calculated for each hidden
layer neuron by summing all the products of the output
layer δ values and adjusted weights into this neuron then
multiplying by the derivative of the squashing function,
as illustrated below in (7):

δp, j = OUTp, j (1 − OUTp, j)

(∑
q

δq,kwpq,k

)
(7)

where δp, j is the back-propagated error at neuron p
of hidden layer j , OUTp, j is the output activation at
neuron p of layer j , δq,k is the error at neuron q of
output layer k, and wpq,k is the weight from neuron
p into neuron q of layer k, already adjusted by δq,k

as in (5) and (6) above. The forward/reverse passes
of this learning by back-propagation of error would
be continued until the required overall error (normally
root mean square or RMS) is reached, or in the case of
training failure, a higher RMS error. The nature of the

back-propagation algorithm enables an MLP to solve
any linear or non-linear problem (that is, of mapping
inputs to correct outputs) as long as there are at least
two stages of sigmoid neurons and the learning rate is
kept low.

3. The experimental method
The parameters values for the 32 trials are shown be-
low in Table I. The 9 process parameters of the drawing
trials consisted of rollers’ and plates’ temperatures and
rollers’ speeds, and were varied between 2 levels ac-
cording to a factorial design [8, 9]. The 32 output fibres
were measured for mechanical properties, and also for
shrinkage under heat treatment, crystallographic order
and chains orientation, and the results are shown in
Table II. The series of 32 polypropylene fibres were
all melt-spun using a fixed, commercially-typical set of
parameter values:

Spinneret hole size 0.4 mm
Melt flow index 35 g/10 min
Spinning temperature 230◦C
Metering pump speed 12 rpm
Air quench velocity 30%
Spin finish speed 0.5 rpm
Godet 1 speed 100 m/min

The Kohonen network used input from all 9 exper-
imental variables, and learned the natural topology of
the data , placing the 32 fibres (represented as 32 vec-
tors each of 9 values) onto a 2D map. The Figs 1–3
show the topographical map shade-coded for modulus,
tenacity, and elongation respectively. The analysis in-
dicates the locations in the data space (that is, clusters
of similar patterns of draw parameters) where partic-
ular property values or their combinations exist. For
example, in Fig. 1 (tenacity) fibre 29 had the high-
est tenacity but was shown to have lower values in
the maps of Fig. 2 (modulus) and Fig. 3 (elongation).
Fibres 31 and 32, however, were shown to be more con-
sistent in mechanical properties, with very high values
of both tenacity and modulus. The data analysis pro-
vided by training the SOM revealed whether particular
property combinations were available from the value

Figure 1 The tenacity SOM.

3115

T ABL E I The draw trials data

Temp Roller1 Temp Roller2 Temp Roller3 Temp Plate1 Temp Plate2 Temp Plate3 Speed Roller2 Speed Roller3 Speed Roller4
Ref Deg C Deg C Deg C Deg C Deg C Deg C RPM RPM RPM

1 40 120 125 40 120 120 300 500 580
2 40 120 125 40 120 120 300 500 650
3 40 120 125 40 140 140 400 600 580
4 40 120 125 40 140 140 400 600 650
5 40 120 140 80 120 120 400 600 580
6 40 120 140 80 120 120 400 600 650
7 40 120 140 80 140 140 300 500 580
8 40 120 140 80 140 140 300 500 650
9 10 140 125 80 120 140 300 600 580

10 40 140 125 80 120 140 300 600 650
11 40 140 125 80 140 120 400 500 580
12 40 140 125 80 140 120 400 500 650
13 40 140 140 40 120 140 400 500 580
14 40 140 140 40 120 140 400 500 650
15 40 140 140 40 140 120 300 600 580
16 40 140 140 40 140 120 300 600 650
17 80 120 125 80 120 140 400 500 650
18 80 120 125 80 120 140 400 500 580
19 80 120 125 80 140 120 300 600 650
20 80 120 125 80 140 120 300 600 580
21 80 120 140 40 120 140 300 600 650
22 80 120 140 40 120 140 300 600 580
23 80 120 140 40 140 120 400 500 650
24 80 120 140 40 140 120 400 500 580
25 80 140 125 40 120 120 400 600 650
26 80 140 125 40 120 120 400 600 580
27 80 140 125 40 140 140 300 500 650
28 80 140 125 40 140 140 300 500 580
29 80 140 140 80 120 120 300 500 650
30 80 140 140 80 120 120 300 500 580
31 80 140 140 80 140 140 400 600 650
32 80 140 140 80 140 140 400 600 580

T ABL E I I The output fibres properties

Tenacity Elongation Modulus Cryst fp crys birf Shrinkage
Ref cN/tex % cN/tex (W 1/2) − 1 delta n × 1000 at 130 deg C

1 40.5 92 200 0.92 31.6 19.1
2 48.3 55 238 0.90 32.2 18.4
3 47.8 79 212 0.80 31.4 16.6
4 50 57 242 0.82 33.0 19.4
5 45.7 77 187 0.85 31.5 15.2
6 50.4 63 243 0.82 33.1 19.1
7 40.4 68 205 0.90 31.8 16.0
8 47.8 63 234 0.93 32.6 17.9
9 43 70 209 0.99 31.3 14.2

10 46.6 59 217 0.96 31.8 16.3
11 41.6 86 199 0.85 31.5 15.6
12 47.2 63 199 0.85 31.9 18.1
13 40.4 81 181 0.90 31.5 15.0
14 48.2 66 228 0.87 32.1 16.3
15 44.5 49 180 1.10 31.4 11.1
16 47.7 54 228 0.98 32.0 11.5
17 48.2 59 232 0.87 32.2 19.1
18 41.1 83 205 0.90 31.9 16.6
19 46.7 66 221 0.97 32.6 16.7
20 44.8 60 188 1.00 31.6 14.7
21 50.4 41 218 0.97 32.8 17.7
22 45.2 80 181 0.97 31.7 13.4
23 50.2 49 225 0.88 32.5 12.5
24 43 71 199 0.92 31.9 12.5
25 52.6 40 228 0.95 33.4 10.3
26 46.9 64 210 0.98 32.0 9.3
27 53.1 40 234 0.96 33.1 9.3
28 45.1 70 231 0.99 32.2 8.5
29 53.3 43 226 1.00 33.0 8.6
30 45 64 208 1.00 32.3 8.4
31 53.3 42 259 0.96 33.9 9.4
32 53 47 232 0.95 32.1 8.0

3116

Figure 2 The modulus SOM.

Figure 3 The elongation SOM.

ranges of the process parameters. The analysis showed
that a user requiring, say, high values for all three me-
chanical properties would have to consider conducting
32 more of the designed trials, this time with larger
ranges of values for the draw parameters, to expand
the data space while maintaining its multivariate qual-
ity. The Kohohen analysis also served to confirm that
the draw data fell naturally into topological areas cor-
responding to values of fibre properties: the Figs 1–3
show clear clusters of low/medium results, and defined
locations for high values. The non-linearity of the pre-
diction problem is also evident, for example high mod-
ulus appears in several clusters separated by areas of
low modulus, and similar but different clustering is ev-
ident for elongation. This quality check suggested that
the the trials data would provide enough information to
enable successful modelling of the draw process, but
that there were non-linearities, justifying the use of an
MLP (as explained in Section 2.2, above).

In modelling, care must be taken to ensure that the
degrees of freedom in the model are fully taken up
by the size and complexity of the data space sampled.
Spare capacity in a model reduces its ability to gen-
eralise beyond its training examples. The problem of
overfitting data by large neural networks is fully ex-
plained elsewhere, such as [3, 4]. Principal components
analysis [3] is a statistical tool used to reduce data di-
mensions in problems where there is a degree of linear
correlation between the input variables. As regards the

Figure 4 Multilayer perceptron.

polypropylene draw data, it was found that 70% of the
parameters variance could be represented by 6 princi-
pal components. Replacing the 9 parameters by their
principal components reduced the input layer of the
neural nets from 9 to 6, reducing the size (number of
connections) of the networks and encouraging the de-
velopment of draw models which would curve-fit rather
than point-fit.

A series of MLP’s were successfully trained to out-
put the range of fibre properties, using as inputs the
6 principal components of the draw data. A commer-
cial neural software tool [7] was used to implement our
designs for the networks, and for all the target proper-
ties the models were found to be capable of learning
the trials data quite easily, as illustrated by the perfor-
mance (see Fig. 5) of the neural predictor for shrinkage
at 130 ◦C. The ease of learning was expected, in view
of the boundaries and clusterings evident in the SOM
analysis for shrinkage and the capability of MLP net-
works to solve non-linear problems. The configuration
of most of the neural networks is shown in Fig. 4. The
high correlation (R2 of 0.963 and slope 0.965) between
the forecast and observed shrinkage in Fig. 5 shows the
ability of the trained MLP to relate the shrinkage prop-
erty to the patterns of draw parameters for the 32 fibres.

Each net was optimised for ability to generalise from
the sample (that is, the 32 trials) to the global population
(that is, not overfit) by cross validation based on holding
out random pairs of examples from the training: in each
pair, one example would be used for validation and the
other for a blind test. The accuracy of the models in the
blind tests and the optimised designs and weights states
were as shown below. In the table the network configu-
ration is shown as layer sizes for the input nodes, hidden
layer nodes, and output nodes. The root mean squared

Figure 5 An example of the modelling achieved.

3117

errors show the optimal extent of training (mean dis-
tance between the model output and target output) for
each model, on the neural software scale of 0.1 to 0.9:

Prediction Configuration %Accuracy RMS Error

Tenacity {6, 2, 1} 98.2 0.06
Elongation {6, 2, 1} 89.4 0.09
Modulus {6, 3, 1} 91.1 0.06
Shrinkage 130 {6, 2, 1} 91.9 0.06
Cryst. Order {6, 2, 1} 96.9 0.03
Orientation {6, 2, 1} 98.6 0.05

Although all the models performed quite accurately,
some properties were found to be easier to model than
others. A possible reason for this may be that the target
values for some properties such as elongation showed
more variation than those for other properties such as
tenacity. Extra variation would make it more difficult
for the neural model to build a trend function for all
the training points. Another important factor would be
the natural clustering, and the SOM for tenacity (Fig. 1)
displayed better separation than the SOM for elongation
(Fig. 3).

4. A software harness
Once trained, a neural model is defined mainly as the
set of weights for its inter-node (synaptic) connections.
These and other data items specifying the 7 neural net-
works were embedded in software written in-house at
the School of Textiles. This program was created sepa-
rately from the neural nets development system used to
build and test the models, and does not require its users
to have experience of artificial neural systems. The soft-
ware behaves as a search engine, simulating thousands
of polypropylene fibre draw experiments throughout
the data space for which the contributing neural net-
works have been trained.

A fitness function F was defined, so that the search
engine could optimise for whatever fibre properties the
user has specified:

F =
(

P∑
i=1

[
1 − (∣∣pT

i − pM
i

∣∣/pT
i

)])/
P

where P is the number of property values specified in
the search, pT

i is the target value of property i , and pM
I

is the model output for property I .
Since the error distance used for F is relative, the

fitness is independent of the property units, and the di-
vision by P expresses the fitness as a mean success over
all the property values specified. The system was found
to be capable of delivering optimal solutions for pro-

ducers: for example, the set of 9 draw parameter values
would be found which would best produce a fibre with
a low modulus but high tenacity, or a fibre with low
shrinkage when heated. Since the crystallinity models
were also embedded, the production specification re-
port included information on the order and orientation
of the polymer which would be produced.

5. Conclusions
This paper shows that combining experimental design
and neural networks modelling can help polypropylene
fibre spinners predict the nature of the outputs from
the drawing of spun fibres. It was found that although
network training relied on a small set of examples and
parameters were varied using only 2 levels, the balance
of the experiments and interpolative ability of the neural
models allowed models to be developed which were
able to generalise quite well to examples outwith their
training.

By the use of search software, the parameters can be
found to provide the products specified by customers,
so the fibre producer is put in a position to optimise pro-
duction without risking excessive downtime for trials.

There are many other current and potential appli-
cations for this approach in textiles processing, and
few reasons why it should not be taken up by those
interested in competitiveness and flexible production
through optimisation.

References
1. D . R U M E L H A R T , G . H I N T O N and R. W I L L I A M S , Learn-

ing internal representations by error propagation, in “Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cogni-
tion” (Cambridge, MA, MIT, 1986).

2. J . Z U P A N and J . G A S T E I G E R , Neural Networks for Chemists
(VCH Publications) (1993).

3. C . B I S H O P , Neural Networks for Pattern Recognition (Oxford
University Press, 1995).

4. J . H E R T Z , A . K R O G H and R. G. P A L M E R , Introduction to
the Theory of Neural Computation (Addison Wesley, NY, 1991).

5. T . K O H O N E N , Self-organised formation of topographically cor-
rect feature maps, Biological Cybernetics 43 (1998) 56. Reprinted
in Anderson and Rosenfield.

6. R . D . Y A N G , R . R . M A T H E R and A. F .
F O T H E R I N G H A M , 2000, unpublished data.

7. NeuFrame (Neusciences, unit 2, Lulworth Business Centre,
Nutwood Way, Totton, Southampton SO40 3WW, UK).

8. N . L O G O T H E T I S and H. P . W Y N N , “Quality Through
Design” (Clarendon Press, Oxford, 1989).

9. R . A . F I S H E R , “Design of Experiments” (Oliver and Boyd,
Edinburgh, 1966).

10. E . B A U M and D. H A U S S L E R , What size net gives valid gener-
alisation? Neural Computation 1 MIT (1989).

Received 10 August
and accepted 19 December 2000

3118

